
RD-A±65 ?09 GENIE INFERENCE ENGINE RULE WRITER'S GUIDE(U) ARMY /
BALLISTIC RESEARCH LAG ABERDEEN PROVING GROUND ND
F 5 BRUNDICK RUG 87 BRL-TR-2932

UNCLASSIFIED F/G 12/5 NL

mhhmmhmhmmum
smhm hhhhhhhhls
EohhEEEEEE

3*3lwmp Mr. Ur LLL

I ~ ~ 136

I2I

mom

U~12 VIL IV V - U U V w

AD

Lfl

EIL

TECHNICAL REPORT BRL-TR-2832

GENIE INFERENCE ENGINE
RULE WRITER'S GUIDE

FREDERICK S. BRUNDICK

AUGUST 1987

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

US ARMY BALLISTIC RESEARCH LABORATORY
\BERDEEN PROVING GROUND, MARYLAND

917 10 6 049

.IIr, V

DESTRUCTlON NOTICE

Destroy this report when it is no longer needed. DO NOT return it to the
originator.

Additional copies of this report may be obtained fran the National Technical
Information Service, U.S. Department of Carerce, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department
of the Army position, unless so designated by other authorized docunents.

The use of trade names or manufacturers' names in this report does not con-
stitute indorsemnt of any can~ercial product.

-Sr

5* S* . ..0(5's~ . \~* 5**-

!**~. 5 (.

UNCLASSI FIED
SECURITY CLASSIFICATION OF THIS PAGE Ab "i / &" 9

Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704-0188

1 Exp Date Jun30, 1986
la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSI FIED
2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

2b DECLASSIFICATION/! DOWNGRADING SCHEDULE Approved for public release, distribution
is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

ARBRL-TR-2832
6a ,pkE OF E.RF?8MINJ OgGNI ATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Ua Bal I STiC Kscn LaD (If applicable)

Vuln/Lethality Div., (LTTB) I SLCBR-VL-L

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Aberdeen Proving Ground, MD 21005-5066

8a. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT YTASK IWORK UNIT
ELEMENT NO NO NO ACCESSION NO

11 TITLE (Include Security Classification)

GENIE Inference Engine Rule Writer's Guide

12 PERSQNAI, AUTHOR9)
Frederick S. Brundick

13a. TYPE OF REPORT 113b TIME COVEggD 14 DATE OF REPORT (Year, Month, Day) 115 PAGE COUNT
Final jFROM Jun TOApr 87 10 July 1987 59

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SuBJECT TERMS (Continue on reverse if necessa and identify by block number)

FIELD GROUP SUB-GROUP Expert Systems Inference Engine
Artificial Intelligence
Knowledge Representation

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

-- An expert system is a program that mimics the performance of a human expert in some
intellectual endeavor. The inference engine is the heart of the expert system. Genie
(GENeric Inference Engine) is a rule-based expert system shell that was initially developed
as the basis of an expert system to assist human experts in assessing the vulnerability of
turbine jet engines. It is also being used to guide statisticians in performing non-para-
metric analyses. The program is best suited for diagnostic and classification problems.

The report is intended for the person creating a knowledge base to be used by Genie.
A sample knowledge base will be built to show how Genie's various keywords work and how pro-
duction rules are written. Detailed definitions and restrictions of the keywords, two sample
knowledge bases, and sample runs are presented in the appendices. A glossary is included to
explain the terms used. .

(Continued)

20 DISTRIBUTION AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURiTY CLASSIFICATION

r UNCLASSIFIEDUNLIMITED C1 SAME AS RPT C1 DTIC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE NDvDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

FREDERICK S. BRUNDICK 301-278-3091 SLCBR-VL-L
DD FORM 1473, 84 MAP 83 APP ed-tion may be used urt!7 e hauted S16'W jiY C LAS ICATION 0: THIS PAGE

All other ed,t,ons are obsolete UIL L 1IEU

e If * Rep* o~ *p r i I- - '

19. (continued)

> An inference engine shell will aid the development of future expert systems, while
the expert systems themselves will make the vulnerability analyst's job much easier.
This guide will enable anyone to create his own expert system.

k,

VVVTVWM VTWWTLW11L9jW,9 VV~kh_7UN7NV1W" UEkW ffR~t -- m r

TABLE OF CONTENTS

Page

1. INTRODUCTION... 5

II. GETTING STARTED .. 6

111. DEFINITION OF TERMS... 10

IV. WRITING PRODUCTION RULES .. 11

V. MENUS.. 12

VI. NUMERIC FACTS... 13

VII. OTHER OPTIONS.. 14

VIII. HOW TO WRITE FACT STATEMENTS.. 17

IX. BUILDING A KNOWLEDGE BASE .. 18

X. PACKAGING THE EXPERT SYSTEM ... 19

*XI. FUTURE ENHANCEMENTS.. 21

APPENDIX A. Knowledge-Base Keywords .. 23

APPENDIX B. Glossary of Terms ... 29

APPENDIX C. Animal Knowledge Base.. 33

APPENDIX D. Animal Bootstrap File.. 39

APPENDIX E. Sample Run of Animal Identification Expert System.......................... 43

APPENDIX F. Numeric Test Knowledge Base .. 49

APPENDIX G. Sample Run of Numeric Expert System .. 53

DISTRIBUTION LIST... 57

I tcc~szsion For

ITs GflA&I

~r f,~ N DTIC TAB
* ~ IUn-Innounced

pi ibu t on

Availability Codes
Avail and/or

Dit ISpecial

3~I

I. INTRODUCTION

An expert system is a program that mimics the performance of a human expert in some
intellectual endeavor. A basic tenet of the expert system methodology requires separation of domain
expertise from the strategies for manipulating and applying that expertise; this modularity greatly
facilitates debugging and modifying either subsystem. Figure I shows a typical expert system and a
few of the major subsystems of the inference engine.

inference engine

user explanation backward knowledge
functions reasoning base

grammatical forward
functions reasoning

. FIGURE 1. Typical Expert Systrn

The inference engine is the heart of the expert system. It interprets the production rules and
other data s.tructures stored in the knowledge base (KB), queries the user for input, and draws
conclusions. Genie (GENeric Inference Engine) is a rule-based expert system shell that was initially
developed as the basis of an expert system to assist human experts in assessing the vulnerability of

turbine jet engines.* It employs two control strategies, called backward chaining (or goal driven) and
forward chaining (or data driven) In backward chaining Genie selects one of the KB's hypotheses
and attempts to accumulate supporting evidence to verify the statement, while in forward chaining it
applies known fact. to the pro.duction rules to learn new facts.

Ease of use was; a fundamental objective in developing Genie. The rule writer (also called the
knowledge engineer) should not have to learn a new computer language, but should be able to
concentrate on building hi; K B Genie's facts are therefore written in everyday English with only a
few restrictions. While Genie never actually "understands" the meaning of a statement, the
grammatical functions can convert a statement fro. n affirmative to negative and vice versa or cast
the statement in the form of a question

The ability of the expert system to explain its actions is another desirable feature. The user can
ask Genie why it is asking him a particular question, what the current goal (hypothesis) is, and what
facts have been learned thus far. Genie also keeps an audit trail so that the user can see how it
reached its final conclusion. This serves both to point out errors in the knowledge base and to assure
the user that the solution is correct.

U *Brundick, F.S., et al. GENIE An Inference Engine with Applications to VulneruhilitY

Analysis. BRL ReportTR-2739, June 1986.

* 5

This report is intended for the person creating a knowledge base to be used by Genie. A sample
KB is built to show how Genie's various keywords work, and new terms are explained as they are

encountered. Detailed definitions and restrictions of the keywords are presented in the appendices

for reference. The example is intentionally kept simple to demonstrate Genie's underlying concepts
and is not meant to be a guide for knowledge engineering.

There are three implementations of Genie available -- one in Franz LISP running under UNIX, a
recently completed Common LISP translation for Gould UTX/32 2.0, and a larger INTERLISP-D
version for Xerox 1108 and 1186 LISP Machines. The INTERLISP-D version makes use of multiple
windows, pop-up menus, different fonts, graphics, mice, and other features unique to the Xerox
environment. These differences will not affect the rule writer, since the same KB may be run on all
three systems with no changes. The sample runs in Appendices E and G were generated with the
Franz version.

II. GETTING STARTED

Genie is best suited for classification and diagnosis problem: our example involves building a
simple expert system to identify various animals. The first step is to determine what animals the
system should "know" about, this KB will use bat, giraffe, zebra, tiger, cheetah, lion, ostrich,
penguin, robin, owl, vulture, goldfish, shark, and piranha. Next the animals are divided into
categories One natural grouping is mammal, bird, and fish, while two subsets of mammals are
ungulates and felines. Partitioning the data into distinct groups speeds up the inference process and
eliminates many superfluous questions. For example, if Genie has determined that the animal is a
mammal then it can ignore all birds and fish, and it will not a-k irrelevant questions like "Does
animal have feathers?". (Of course, if Genie incorrectly assumes the animal is a mammal then it will
not reach the correct conclusion This problem is not restricted to the use of groups and is another
point of departure between traditional and Al programming.)

The groups and their members are graphically shown in Figure 2. Notice that this tree is much
simpler than the tree:. in a "real" system, this is partly because the knowledge base is small and
easily partitioned into distinct groups

The links in the trees represent rules, where the top fact is ont of the antecedents and the bottom
fact is the conclusion. For example, the nammal-ungulate link means "if the animal is a mammal
and certain other conditions are met then the animal is an ungulate", while the ungulate-zebra link
means "If the animal is an ungulate and the other conditions are true then the animal is a zebra".
The hypotheses (indi'.idual animal,) are called leaf nodes or simply leac,,s. (A second type of leaf
node will be discussed later.) The boxed nodes (groups) are intermediate nodes. The topmost node in
the tree (ANIMAL) is called the root node, although Genie does not use an explicit root node; the
term is mentioned for completeness

6

.. - ~' ~'- -

ANIMAL

felin golats sharkat pi a h

tiger cheetah lion giraffe ze ra/

ostrich penguin robin owl vulture

FIGURE 2. Animal Groups

Once you've chosen your initial groups (if any) you can begin writing rules, so let's start with the
fish rule. Three condition- are adequate to describe a fish as shown in the production (or if/then) rule
below:

IF animal has scales
and animal has fins
and animal swims

THEN animal is fish

There are two different rules about mammals instead ofjust one.

IF animal has hair
and number oflegs LE 4

THEN animal is mammal

IF animal gives milk
THEN animal is mammal

The two sets of facts that define "birdness" are:

IF animal has feathers
THEN animal is bird

7

IF animal flies
and animal lays eggs
and Lumber of legs EQ 2

THEN animal is bird

Rule writing is an iterative process of testing and refining rules until the system performs
correctly. Since the Animal knowledge base is presented as a finished product, here is an
explanation of these rules in some detail. The fish rule says the animal must possess three
characteristics to be a fish, although some of the facts seem redundant. If you search the Animal KB
you will discover that scales and fins are mentioned only in this rule, so either one would be enough
to uniquely identify a fish. But there are animals other than fish that have scales, and if someone
were using this system to identify an animal that Genie did not know about (e.g., a garter snake)
then he might think Genie had correctly identified the animal when it really had not. These rules
were taken from a much larger KB that included reptiles and insects, so certain facts may actually be
irrelevant. Notice that milk and feathers were considered to be distinctive enough to classify the
animal as a mammal or bird, respectively. On the other hand, while all mammals have hair, not all
hairy animals are mammals, so an additional fact involving the number of legs was required so that
Genie would not confuse a zebra with a tarantula. Likewise, not all flying, egg-laying animals are
birds.

In the sample rules all the antecedents were written with ANDs, meaning all the facts had to be
true in order for the rule to fire and the conclusion (there may be more than one conclusion, to be
added to the dynamic portion of the KB. With the exception of an option that will be discussed later,
the antecedents are always ANDed together, and the rule writer &,es not actually type the word and
in the rule. When Genie learns a new fact it forward chains on the fact, testing each rule it appears
in to see if the rule will fire. If other facts are deduced they will also start a series of forward chaining
tests. Eventually no more rules will fire, all the new facts will have been tested, and the chaining
will stop.

In contrast to this, rules which reach the same conclusion are ORed together. When Genie is
given a fact to verify, the first thing it does is find out if the fact appears as the conclusion of any
rules. Ifso, it backward chains on the first of these rules and attempts to sequentially verify each fact
in that rule. It will recurively climb the tree until it reaches a fact which is a leaf node (i.e, a
non-intermediate node) and ask the user if the fact is true. If a rule fails Genie will try the next rule
that deduces the desired fact, ifall the rules fail the fact is stored with a truth value of indeterminate.

The tree in Figure 3 shows how Genie would attempt to prove that the animal is a mammal.
Genie begins by backward chaining on rule I The first fact in this rule is "animal has hair" which is
a leaf node, so Genie will ask the user if the animal has hair. If so, it will ask how many legs the
animal has. If the number given is less than or equal to 4, rulel will fire and Genie will learn that
the animal is a mammal. If the animal does not have hair or it doe , have hair but the number of legs
is greater than 4, Genie will backward chain on rule2 and ask if the animal gives milk. If it does give
milk, rule2 will fire and Genie will deduce that the animal is a mammal. If it does not give milk,
then Genie will mark "animal is mammal" as indeterminate, meaning it tried to determine the truth
of the statement but failed (see DEFAULT below). Regardless of the outcome (true or indeterminate)
Genie will forward chain on "animal is mammal". Similar trees could be drawn for the bird and fish
rules

8

animal has hair number of legs LE 4 animal gives milk

rulel rule2

mammal

FIGURE 3. Mammal Subtree

The animals may be divided into two other groups, namely carnivores and non-carnivores. There
are two rules that reach the conclusion "animal is carnivore". The% are:

IF animal eats mostly meat
THEN animal is carnivore

IF animal has pointed teeth
or animal has claws
or animal has forward-pointing eyes

NEE) 1
THEN animal is carnivore

The second rule has mammal-specific features which means it is not quite correct (how many
carnivorous birds have pointed teeth?), but that's not the point of this rule This production rule has
a NEED I clause, which turns it into an OR rule. It would have been perfectly correct to have
written the second rule as a series of three simple rules where each contained only a single
antecedent. One reason for allowing the NEED clause was to minimize the number of rules in a KB;
it is also easier to understand since several trivial rules have been grouped together. The original
reason for the NEEI) option was to create rules where most of the facts (but not all) were needed, as
in medical diagnosis. A patient may not have all the symptoms that would indicate a particular
disease, so the doctor would use a heuristic rule such as "if the patient has 'most' of the symptoms,
then he has the disease". Such a rule would be written as:

IF patient has symptom 1
patient has symptom 2
patient has symptom 3
patient has symptom 4
patient has symptom 5

NEED 3
THEN patient has disease X

9

This means the rule will fire if ANY three of the file antecedents are true. A more sophisticated
version of a NEED rule acts as a combination AND/OR production rule as shown in the example
below.

IF animal is ungulate (10)
markings are dark spots (10)
animal has long neck (1)
animal has long legs (1)

NEED 21
THEN animal is giraffe

The numbers in parentheses are not weights in the normal sense, so "animal is ungulate" is not
10 times as important as "animal has long neck". Ifyou code the facts as A, B, C, D, and E then this
rule is saying "the animal is a giraffe if both A and B are true and one (or both) of C or D are true"; in
a more precise form, E = A and B and (C or D). Genie will know this rule has failed if the animal is
not an ungulate or if it does not have dark spots, regardless of the truth of the other three facts,
because both A and B must be true for the true facts to total 21 There is nothing special about the
values 10 and 1, but you must be sure that the rule will not fire on an unexpected combination of
facts. Changing the "weights" of A and B to 2 and the needed total to 2 will mean E = A or B or (C
And D). It is impossible to choose a set of numbers which would mean E = (A and B) or (C and D). in
that case you must write two rules. This was done intentionallk to prevent the rule writer from
writing complicated rules that would be difficult to understand and debug

III DEFINITION OF TERMS

The terms fact and truth haN e been used without being formally defined In a Genie KB, each
piece of information is called a fact statement or simply a fact. The grammatical portion of Genie can
perform primitive operations on facts, such as converting from affirmative to negative and vice versa
and rewriting a fact in the form of a question. Every fact in the KB has an initial truth value of
unknown, with the other possible values being true, false, and indeterminate. A fact's truth may
become true or false when the user answers a question or makes a menu selection, a numeric fact has
values for all of its component variables, an exclusive-or set is evaluated (see XOR below), or a rule
fires. All of the examples so far have involved only affirmative facts, so here are a couple of negative
fact examples.

IF animal is bird
and animal does not fly
and animal is black and white
and animal swims

THEN animal is penguin

IF animal eats meat
THEN animal is not vegetarian

The first of these rules contains a negative antecedent: animal does not fly. Genie will store this
fact (as it stores all facts) in its affirmative form, i.e., animal flies, and record a desired truth value of
false in the rule. When Genie tests the rule to see if it can fire, it will compare the desired truth of
each fact with the fact's known truth In this case, if the fact is false then the rule will be satisfied.

10

To avoid confusion between known truth and desired truth, Genie uses the terms true and false with
the former and succeeded and failed with the latter; see rule3 and rulel8 in Appendix E. The second
rule has a negative conclusion; if the animal does eat meat then the single antecedent will succeed,
the rule will fire, and Genie will record the truth of the statement "animal is vegetarian" as false.

While true and false are familiar through everyday usage, the term indeterminate requires some
explanation It is not the same as unknown. If Genie needs to know a fact's truth value, and the
value is currently unknown, then Genie will backward chain or ask the user a question to determine
the truth value. If the backward chaining fails or the user does not know the answer, then the fact
becomes indeterminate. This is Genie's way of saying "I tried to learn the fact's truth but I couldn't,
so I'll forget about it and throw out all the rules that use this fact (with the possible exception of
NEED clauses)". Rules always require antecedents to have valucs of true or false, so if a fact is
indeterminate then it must always fail.

Sometimes you will want to override an indeterminate fact for instance, you might decide that
all mammals must adhere to one of the two mammal rules discussed earlier. You can tell Genie (via
the keyword DEFAULT) to record the truth value of "animal is mammal" as false if both rules fail.
The DEFAULT clause may be thought of as a meta-rule that allows the rule writer to say "If a fact is
indeterminate, then assume the following truth value". This is the oniy way that the rule writer may
refer to an indeterminate fact. In addition, default values are only used with intermediate facts and
are ignored by facts that the user is asked about directly. When you actually run the inference
engine and a default value is used, the fact will be displayed after the word Assumption, and if you

ask Genie how it learned that fact it will tell you it used a default value because all the rules leading
to that conclusion failed.

IV. WRITING PRODUCTION RULES

There are a few restrictions that you must know about before you can write your own rules. First
of all, rules may not be recursive, i.e., if you backward chain on any path through the fact tree you
should never see the same fact more than once. The following rules are directly recursive:

I F animal eats mostly meat
THEN animal is carnivore

IF animal is carnivore
THEN animal eats mostly meat

Here is a set of rules that are indirectly recursive:

IFaTHENb
IFbTHENc
IFcTHENd
IFdTHENa

Genie does not check for recursion, so it is very important that you do not create recursive rules.
if Genie tries to backward chain on a recursive fact it will hang in a loop Remember that Genie
manipulates all facts in their affirmative form, so "IF a THEN b" and "IF b THEN not a" are
recursive

11

.

Suppose that you had several disjoint facts which belonged to the same set, e.g., an animal may

be a mammal or a bird or a fish, but it cannot be a mammal-bird or a bird-fish or a mammal-fish. If
Genie learned (during a run) that an animal was a fish, then it could ignore all the mammals and
birds; it would not bother to ask the user useless questions like "Does the animal have hair?". Using
normal production rules, you would have to write:

IF animal is mammal
THEN animal is not bird
and animal is not fish

IF animal is bird
THEN animal is not mammal
and animal is not fish

IF animal is fish
THEN animal is not mammal
and animal is not bird

Not only are these rules tedious, but they are also recursive! Genie uses the keyword XOR
(exclusive OR) to implement the concept of mutually exclusive facts. Instead of the rules given
above, you would write:

XOR animal is mammal
animal is bird
animal is fish

Genie treats XORs as a subset of production rules, so if it is trying to prove "animal is mammal",
both the mammal rules fail, and there is no default value, then it will backward chain on "animal is
bird". This appears to be recursive, but Genie keeps track of the XOR facts that it is testing to
prevent loops from forming XOR "rules" fire only if a fact is true (affirmative) as shown in the three
expanded rules. If Genie learns that the animal is a mammal, then it knows the animal is not a bird
and not a fish, but if it learns the animal is NOT a mammal and the animal is NO'T a bird it does not
assume that the animal is a fish.

V. MENUS

If you look at the mammalfbird/fish rules given earlier, you will notice that each rule has a fact of
the form "animal has X" where X is one of hair, feathers, or scales. These rules will work as written,
but it is possible that Genie will ask the user about each of these skin coverings as it searches the tree
for a solution. A sample dialog could go:

Does animal have hair? no

Does animal have feathers? no

Does animal have scales? yes

It would be nice to simply ask the user "What is the animal's skin covering?" and resolve the
matter in a single question, but now we run into problems with natural language. If the user says

12

~ w~ *~ ~ *~ ***' %~ *- '~ ,

%7 I7 -A .7 -7 1 Y "

fur, Genie must know that is the same as hair. There is a finite number of responses that are valid
here (hair, feathers, scales, and unknown), so Genie just displays all the choices in a menu and lets
the user pick one. There should be a special entry for "none of the above" to handle peculiar animals
like whales and for animals that this KB does not know about like grasshoppers. All facts in a menu
are automatically put into an XOR set on the assumption that only one of the facts may be true.

While the exact syntax for MENU is given in Appendix A, here is an explanation of the details.
Each menu has a single template and one or more fragments or choices. When Genie compiles the
KB, it substitutes each fragment into the template and generates a list of fact statements which you
must use in the KB. The template looks like any other fact, and you put an X where each fragment
should be inserted- the X may appear anywhere in the template but is normally placed at the end.
For example, here is how the skin covering menu would be entered:

MENU
animal has X

(hair)
(feathers)
(scales)

Each fragment has parentheses around it to allow for multiple words. If you wanted to refer to
these facts in rules, you would use:

animal has hair
animal has feathers
animal has scales

When Genie builds a menu, it displays a "question", the choices, and a prompt. The question is
based on the template unless the rule writer has supplied a special question. The example above
would use the default question of "Animal has", whereas the template "Animal has X fur" would
generate the question "Animal bas --- fur". In the Animal KB, the statement "Animal has:" was too
vague, so the MENU clause uses the question "What is the skin covering?". Likewise, the template
"markings are X" does not say much, so its menu asks "What kind of markings does animal have?".

VI. NUMERIC FACTS

The facts discussed so far have been logical (true/false) facts, e g., animal flies or animal does not
fly, or logical facts that have been grouped together in a menu Real data also include numbers,
which Genie manipulates in numeric facts. The sample rules presented earlier show the simplest
form of a numeric fact: Variable Relation Number. Variable has the form "Attribute of Concept"
(usually referred to as AofC), Relation is one of the 6 numeric inequalities (e.g, GT, >, LE, < =,
etc.), and Number is a real or integer constant. A concept is an item or object and an attribute is some
property of the item. Some examples of attribute/concept pairs are weight of person, number of legs,
and time of day.

Each variable may be thought of as a sub-fact and is manipulated almost like a fact in a rule.
When Genie encounters a numeric fact (e.g., number of legs LE 4) it looks in the dynamic portion of
the knowledge base to see if the fact's variable has been assigned a value. If not, it asks the user for a
value, and if the user does not know a value it backward chains on the variable. Instead of using
production rules, you supply the KB with an equation to evaluate to generate an estimate of the

13

number. In principle, this idea is similar to the if-needed daemons used in some frame-based
systems. The equations are LISP expressions with the list "(Attr of Concept)" substituted for each
independent variable. If the user does not know the value of an independent variable, Genie will
backward chain on the variable if it has a default equation.

Numeric facts may only appear as the antecedents of production rules. The rule writer may
"customize" a variable by using the NUMBER keyword. He may supply a default equation, the
allowable range of values (for input checking), the number of decimal places to use when displaying
the value, and the data units for the variable (see Appendix A). Genie does not know what the data
units mean; they are displayed with the value of the variable and when the user is asked to supply a
value No type checking or conversion of input values is performed at this time.

While only the simplest form of a numeric fact was used in the Animal KB, there are actually
several forms which may be used The general form is "Left-Hand-Side Relation Right-Hand-Side"
kor "Lhs Relat Rhs") where each side of the equation may be a simple constant, an AofC, or a LISP

expression that evaluates to a number. If you use an expression, each AofC must have parentheses
around it, while for simple AofCs the parentheses are optional. A bounded numeric statement has
the form "Number Relation AofC Relation Number" where the relations must be LT or LE. Rather
'ban belabor the point, here are iome examples which show valid numeric facts

number of legs LE 4
heightofjohn > heightoflynn
(quotient (length of item) (diameter of item)) GT 2.5
3 < = number ofpeople < 6

'Thes, facts Inearl

Is the number of legs less than or equal to 4 ?
Is John taller than Lynn ?
Is the item's length divided by its diameter greater than 2.5 ?
Are there 3, 4, or 5 people ?

The Animal KB contains only a couple of simple arithmetic facts; refer to Appendix F for a
demonstration numeric knowledge base that uses several variables, complex numeric facts, and
default equations. Appendix G shows how units and bounds are used in a sample run.

VII. OTIIEROPTIONS

Farlier it was mentioned that Genie generates its own questions for logical facts, variables, and
menus. Menu questions are entered along with the menu template and choices within the MENU
dlause. You may supply your own question for non-menu facts and variables with the QUESTION
keyword. The syntax is simple, but remember that the question is displayed exactly as you write it; a
blank is added after the question to separate it from the user's response, but you must supply the
question mark or other punctuation and the initial capital letter (if desired) Two simple examples
are shown below:

QUESTION
animal is scavenger Is the animal a scavenger?

14

TIVYIPL-71AILPF ~ ~ rX W1PV- . •_XW

QUESTION
length of thread How long is the threaded portion of the

item (inches)?

The DEFAULT keyword was discussed in Section III. A default is a list of two fact statements
where the first must be an affirmative statement and the second may be either affirmative or
negative, but both must refer to the same fact. Unlike the other keywords discussed so far, where
each keyword is applied to a single object, more than one default pair may be given in a single
DEFAULT clause. You may prefer to put each default pair in a separate clause for clarity (as shown
in Appendix C). Here is an example using Animal data:

DEFAULT
(animal is mammal animal is not mammal)
(animal is bird animal is not bird)
(animal is fish animal is not fish)

You only need to supply default values for intermediate facts (the boxed nodes in Figure 2). If the
user does not know if a simple fact is true, Genie records a truth value of indeterminate, ignoring any
default value that the rule writer may have specified. All hypotheses are implicitly assumed to be
false because the main objective is to prove what something is, not what it is not.

The next keyword is in some ways the most important, as Genie must be told what the
hypotheses are via HYP. When the inference engine is run, it randomly orders all the hypotheses
and attempts to verify each of them until one has been proven to be true or all of them have failed
(you may set a flag to force Genie to test every hypothesis). The order that the hypotheses are put
into the KB is not important, nor does it matter how they are grouped into HYP clauses. In the
Animal KB multiple HYP statements were used with similar animals grouped into each clause:

HYIP
animal is bat

HYP
animal is tiger animal is cheetah animal is lion

HYP
animal is giraffe animal is zebra

A backward chaining expert system tends to ask questions in a logical or "natural" order because
it follows the same train of thought that a human expert would use. For instance, if Genie is trying to
prove that the animal is a mammal it will ask questions that have a direct bearing on
'°mammalness", not questions about the animal's markings or what it eats. However, there are times
when you may wish to ask certain questions at the very beginning of an identification run: the classic
example is asking for the patient's name, age, and sex before attempting to diagnose his illness.
While these bits of information ma) never be needed during the analysis (thte name is only required
for record-keeping purposes), people are used to giving background information at the start.

The keyword ASK-FIRST is used to tell Genie which facts to verify first. Notice that Genie does
not simply ask if the fact is true, but actually attempts to prove it by backward chaining. This is how
you can override the order of the hypotheses and force a given hypothesis to be tested first. if a fact is
usually true, then make that fact an a.k-first, likewise a mutually exclusive fact may be proven to

15

IIIIC I~ i III

prune the search tree and eliminate some of the hypotheses. Like hypotheses, ask-first facts may be
grouped into single clauses or scattered in separate clauses, but order is important, as the facts are
verified (or asked) in the same order that they are encountered in the KB file. Each item in an
ASK-FIRST clause is either a fact statement or an AofC:

ASK-FIRST
number of legs
animal is mammal

Genie always announces each conclusion it reaches when a rule fires or when a default value is
used. This feedback is intended to show the user that his input is being analyzed and the expert
system is making inferences and generally working toward a solution. (The alternative is to ask
many questions and then give the solution like a magician producing a rabbit.) However, there may
be times when you create an intermediate fact to use as an artificial group or internal flag, but do not
want the user to be aware of the odd fact. Put the fact in a NOSHOW clause and Genie will not report
when it learns the fact's truth, but otherwise will treat it like any other fact. This keyword was
added for a specific knowledge base and has not been used since then. Numeric facts (e.g., number of
legs LE 4) are never displayed when they are learned because a single variable could appear in many
facts- of course the user may ask Genie to show all the numeric facts that use a given variable.
Multiple facts may appear in a NOSHOW clause:

NOSHOW
animal is feline
show pins menu

If Genie tests all the hypotheses and fails to reach a conclusion it displays "No hypothesis can be
confirmed." You may replace this message with your own via the NULI,-HYP keyword:

NUI-HYP
You should visit the zoo more often.

16

UJU.UW. IU , J dU, VJWW N..' v ww1u~-~.. ,. ~ ~ ~ ~ -
WV-JWiWV.r%-WWW Y16 W r i

VIII. HOW TO WRITE FACT STATEMENTS I
There are a few rules to be observed when writing fact statements:

1. A fact statement is a list of words enclosed in parentheses. The parentheses were left off
in the earlier examples, so study the Animal KB in Appendix C and the Numeric KB in
Appendix F.

2. Genie is case sensitive -- always use lower case. Questions and statements are converted
into "proper" sentences before they are displayed (except for questions that the rule
writer supplied).

3. Do not use punctuation or parentheses. Commas, quotes, and parentheses have special
meanings to LISP; you may use single quotes only in the INTERLISP-D version. Genie's
parser does not know that "isn't" is the same as "is not", so avoid problems and spell

everything out.

4. Avoid the use of"filler" words like a, an, the, etc. Remember that Genie uses English but
does not understand it; sometimes you may be forced to reword a fact to make it more
acceptable to Genie. If you do not like the way the grammar package has worded a
question, then supply your own with a QUESTION clause.

5. Numeric facts must follow a very rigid format. Variables must be exactly three words

long and be of the form "attribute of concept". Convert multiple words to single ones by
putting dashes between the words, e.g., number of left-handed-framistans. See
Appendices A and F for examples of valid numeric facts.

6. The gram nar package is basically a matcher, not a parser. Two facts are the same if and
only if they are identical; "car has four doors", "number of doors EQ 4", and "car is a
four-door" are three distinct and different facts. Be consistent! Note, however, that
numeric facts may use symbolic or alphabetic comparisons interchangeably and you can
use whichever forms you are most familiar with. They were intentionally mixed up in
the examples.

7. There is only one "correct" negative form of a given affirmative statement If you are not
sure how Genie will process a fact, manually call the inversion function, it is named
complement in the Franz version and COMPLEMENT.GENIE in INTERLISP-D. For
example, (complement '(animal has wings)) should return (animal does not have wings).
and (complement '(item is not hollow)) will return (item is hollow) To see how Genie will
word a question, use the functions build-question and BUILI).QUESTION.GENIE. If

you must negate an "irregular" fact, put the word *NOT* at the beginning of the fact. Do
not use negatives with numeric facts; instead employ the opposite comparison. In other
words, if you want to say "animal does not have more than 4 legs" the correct form is
"(number of legs LE 4)".

8. Only use present tense. This should not be a problem unless you refer to past actions, in
which case you may need to rewrite the facts or supply a special question.

17

. ... -------

IX. BUILDING A KNOWLEDGE BASE

Now that all the keywords that Genie understands in a KB have been explained, here are some
further details that a rule writer must be aware of. The rule writer puts all the production rules and
other clauses into a file using his favorite text editor. Blank lines may be used. A semicolon causes
everything following it on the line to be interpreted as a comment (i.e., ignored) by Genie's input
routines.

The entire Animal KB is presented in Appendix C, and here are the first few lines:

This is the Animals data as used by Genie version 5.5

; --. . If/Then rules = I=.
determine general class [mammal, bird, fish)

(IF (animal has hair)
(number of legs LE 4)

THEN (animal is mammal))
(IF (animal gives milk)
THEN (animal is mammal))

(IF (animal has feathers)
THEN (animal is bird))

(IF (animal flies)
(animal lays eggs)
(number of legs EQ 2)

THEN (animal is bird))
(IF (animal has scales)

(animal has fins)
(animal swims)

THEN (animal is fish))

determine subclass [carnivore, ungulate. feline]
(IF (animal eats mostly meat)
THEN (animal is carnivore))

The different types of clauses may be intermingled, but consider separating them both for clarity
and to make future modifications easier, e.g, the production rules might be followed by the
hypotheses, then the mutually exclusive facts, etc. Remember that order is important in
ASK-FIRST clauses but not important for the hypotheses because of the way in which they are
processed.

When the inference engine is run, it first shuffles all the hypotheses, verifies each of the

ASK-FIRST items, and then attempts to prove each of the hypotheses, stopping when a solution is
found or the hypothesis list is empty. The heart of the engine is the function verify (or
VERIFY.GENIE}. When verify is given a fact to prove, it checks the KB to see if the fact's truth

has already been determined. If not, and if the fact appears as the conclusion of any rules, then the
list of rules is passed to the function that performs backward chaining. (If the fact is a leaf node the
user is simply asked if the fact is true.)

There are a number of different strategies that expert systems can use to decide which rule
should be verified first when backward chaining. One method is to check the rule with the fewest

18

antecedents, on the assumption that the system will run faster; another is to use the rule with the
most antecedents because the most information will be learned; and a third is to test the rule with the
fewest unknown facts. Likewise, when a fact is being tested, in what order are the antecedents
verified? Do you ask the simple facts first, or the fact that appears in the most rules, or just shuffle
the facts like the hypotheses?

Genie takes the approach that there is no single best answer, because all knowledge bases are
different and what works in one system may be a poor choice in another. Therefore, all rules, and the
antecedents within the rules, are processed in order of appearance. If fact5 is the conclusion to rules
1, 2, and 4, and verify is backward chaining on fact5, then rulel will be tested first; if it fails rule2
will be tested next, and finally rule4. If rule4 fails, then fact5 is indeterminate (see Section II). This
means that you must be careful when you construct your rules. Try putting intermediate facts at the
top of a rule to force the search tree to be pruned early; the user will be asked detailed questions only
when the selection process has focused on highly likely candidates. For example, here is the shark
rule:

(IF (animal is fish)
(animal is carnivore)
(animal is big)

THEN (animal is shark))

The first two facts refer to major groups that the animal may belong to. If the animal is not a fish
or it is not a carnivore (even if it is a fish), then Genie will not bother to ask the user if the animal is
big because it cannot possibly be a shark. On the other hand, if the KB does not know yet if the
animal is a fish, then Genie will attempt to prove that it is a fish. Because fish, mammal, and bird
are mutually exclusive facts, the search will (probably) be narrowed to one of the three groups.

For the sake of efficiency, a rule is pre-tsted before any of its antecedents are verified. If a rule
has five antecedents, no NEED clause, and the fourth fact has already failed, then there is no reason
to consider the rule because it cannot fire, even if the other four antecedents all succeed. (Rules with
NEED clauses are pre-tested as well, but the details are beyond the scope of this report.) The forward
chaining function calls the same pre-test routine, so most rules are eliminated before the backward
chaining function examines them.

X. PACKAGING THE EXPERT SYSTEM

You should now be able to write your own knowledge base; please study the Animal and
Numeric Test KBs in the appendices for additional examples. Genie is a simple programming
language, and like any other new language you must practice until you are comfortable with all the
features and their syntax, uses, and quirks.

Genie requires some information that is not provided in the knowledge base file. The assumption
is being made that the Franz version of Genie is already running on your system, so the operating
system and installation details will not be explained here (they are available with the Genie source
code). You must create a small LISP file that tells Franz to load and execute the Genie package, the
names of various files, and the state of a few flag variables. This file must end with .1 (that is an I as
in LISP), and you should use an obvious name, eg., the file that runs the Animal system is called
animals.l The rest of this section gives a line by line explanation of animals.I, which is reproduced
in Appendix D:

19

It is nice to begin by displaying a banner:

(msg N "Animal Identification Demo" N N)

Next load the Genie system:

(load 'genie)

The first time Genie reads a KB, it converts all the knowledge into a form it can handle,

stores the information in data structures called frames, and places this "digested" data into

a new file. From then on, when the bootstrap file (in this case, animals.l) is loaded Genie
will read the digested file and ignore the original file. There is nothing special about the

file names; the examples in this report use the suffixes .english and .frames to emphasize

what kind of files they are. Here is how you tell Genie the file names:

(setq InputFile 'animals.english)
(setq DigestedFile 'animals.frames)

The grammar functions learn about irregular verbs from the variable VerbPairs (see

below). One verb that was specific to the Animal KB was added:

(setq VerbPairs (cons '(flies fly) VerbPairs))

This file did not use the two flag variables, whose default values are nil (or false). If the

variable TryAlIHyps is non-nil, Genie will attempt to verify all the hypotheses and not

stop when one is proven. Most of the inference functions have one or more debug
statements in them to allow you to see how Genie is testing various facts and rules, this
trace may be turned on by setting the variable Debug to a non-nil value Debug mode was

originally implemented to test Genie as it was being developed and is still used to test
modifications and extensions to the inference engine. If you run a debug trace on a very
small KB and study the results you will get a good idea of how Genie's inference engine
works. The user's ability to ask how and why are not related to debug mode. Here are the

statements to turn on both of the flags:

(setq TryAlIHyps t)

(setq Debug t)

The last two steps are to initialize the system and start the command interpreter. The
function initialize reads the digested file or compiles the input file, while the function

driver prompts the user for input and processes his commands. You may give driver an
initial command, and the logical choice is to immediately start the inference engine:

(initialize)
(driver go)

Genie consists of several files containing compiled LISP functions and one file of variables. This
file, auxvar.I (for auxiliary variables), defines the keywords that Genie recognizes, patterns for

different kinds of sentences, and some other things that only the Genie maintainer needs to be
concerned with The variable of interest to the rule writer is VerbPairs When complement or

build-question manipulates a fact, it needs to find the primary verb in the fact. The auxiliary verbs

that are known are is, are, and can. If one of these words is not found, the matcher looks for a verb

20

that appears in VerbPairs, and if it still cannot find the verb it uses the first word that ends with an
s. When a fact contains an irregular verb, both the singular and plural form of the verb must be
stored in VerbPairs in order for the fact to be converted correctly. If a fact has a regular verb and
one or more words before the verb ends with an s, e.g., glass breaks easily, then the verb in that fact
must be added to VerbPairs.

The INTERLISP-D environment is quite different from running Franz under UNIX. Instead of
creating a file like animals.l, you must write a LISP function that performs the same actions. Genie
is still being integrated into the LISP machine environment, so concrete details cannot be given at
this time.

XI. FUTURE ENHANCEMENTS

The user cannot change his answers (except in the error-checking sense of Appendix G) in the
current versions of Genie; if he makes a mistake he must start over from the beginning. An
algorithm has been developed (but not implemented) that will allow the user to "undo" a series of
inferences and restore the knowledge base to an earlier state. He can then give a different answer
and continue with the analysis from that point. The rule writer could use this feature to play "what
if?" games to test a new KB.

An expert system currently under development will use multiple knowledge bases, where the
first KB performs a high-level identification and the other KBs refine the analysis and arrive at an
exact answer. If all of the rules were combined into a single KB it would be too large and complex to
test thoroughly. Genie will be modified so that each conclusion will tell the engine what other KBs
need to be run; all the information learned in one sub-analysis will be saved so the next KB can
access it. This approach has the same advantages of modular programming, e.g., each KB may be
tested and then plugged into the entire system and modules may be used i i more than one system. A
multiple KB system acts like a group of specialists, each working on a different part of the problem.

LISP machines provide many features that are not available in traditional operating systems
like UNIX. The Franz implementation of Genie was carefully kept machine and terminal
independent and has been installed with little or no modifications at several sites. On the other
hand, this has weakened the user interface. The INTERLISP-D version of Genie uses multiple
windows, pop-up menus, and graphics, and the user may communicate with Genie by selecting items
from a menu with the mouse or by typing his commands like he does with the Franz version (the
INTERLISP-D implementation is a superset).

Most of the extensions to Genie have been for the user's benefit. Powerful tools need to be
developed to assist the rule writer as well. An interactive, mouse- and window-based rule editor
would be a major improvement to the way rules must be written now. The rule writer would not have
to worry about syntax or other mundane matters and could concentrate on writing good rules.
Allowing him to browse through the knowledge base and observe its structure would shorten the
debugging process and clarify what he is attempting to do.

Genie will continue to evolve as more people write knowledge bases and make suggestions for
new Genie enhancements. These changes will be prioritized on the basis of their usefulness and
made as time permits.

21

APPENDIX A

Knowledge-Base Keywords

23

AV. .V1 I S. I V .

IF:
usage: define an if/then rule
form: (IF FactStmt [(Weight)] FactStmt [(Weight)]...

[NEED (Number))
THEN FactStmt FactStmt ...)

restrictions: rules may not be logically recursive
facts in conclusion may not be numeric

examples:
(IF (detail level is intelligence information)

(number of stages GT 8)
THEN (intelligence info indicates axial compressor))
(IF (compressor has driver rings)

(there are vane lever arms)
NEED ())
THEN (compressor has variable geometry))
(IF (animal is ungulate (10))

(markings are dark spots (10))
(animal has long neck (1))
(animal has long legs (1))

NEED (21)
THEN (animal is giraffe))

XOR
usage: declare facts to be mutually exclusive

if one fact is true the rest will be memorized as false
form: (XOR PosFact PosFact ...)
restrictions: facts must be affirmative
examples: XOR (compressor has variable geometry)

(compressor has fixed geometry))
(XOR (animal is mammal) (animal is bird)

(animal is fish))

HYP.
usage declare a fact to be a hypothesis
form. (HYP PosFact PosFact ...)
restrictions facts must be affirmative
example (H Y P (compressor resembles a T58)

(compres-ior resembles a J57))

QUEST'IION:
usage- define question to be used instead of generating one
form. (QUESTION PosFact Question)

(QUESTION AofC Question)
restrictions, fact must be affirmative
examples: (QUESTION (there is a diameter decrease before compressor)

(Is there a significant decrease in the
diameter before the compressor?))

(QUESTION (number of stages)
(flow many stages are in the compressor 9))

25

MENU:
usage: define multiple choice fact menu

facts will be made mutually exclusive
form: (MENU Template [QuestionI (Choice Choice ...))
restrictions: facts must be affirmative
examples: (MENU (compressor housing is X)

((mild steel) (aluminum)))
(MENU (detail level is X) (What is the level of detail?)

((low) (medium) (high)))

ASK-FIRST:
usage: force Genie to verify (ask) these facts or numbers first
form: (ASK-FIRST FactStmt FactStmt... AofC AofC ...)
restrictions: none
example: (ASK-FIRST (compressor has variable geometry)

(number of stages)
(detail level is high))

DEFAULT:
usage: declare truth to be assumed if fact cannot be proven
form (DEFAULT (PosFact FactStmt) (PosFact FactStmt) ...)
restrictions: none, but FactStmt will usually be negative
example. (DEFAULT ((compressor has variable geometry)

(compressor does not have variable geometry)))

NUNIBER:
usage: define parameters for numeric variable

UNITS = units associated with variable
EQN = form to evaluate if user doesn't supply value
PRECISION - number of decimal points to use when

displaying value
RANGE = bounds for checking validity of user ,nput

form. (NUMBER AofC
[(UNITS I)ataUnits)]
[(EQN Formula)]
[(PRECISION Integer)]
[(RANGE Number OrderRelat X OrderRelat Number))
[(RANGE X Relat Number)])

restrictions: none
examples: (NUMBER (speed of shaft)

(UNITS rpm)
(EQN (plus 72788 (time,

(log (airflow of system)) -1.0873)))
(PRECISION 1)
(RANGE X GT 0.0))

(NUMBER (time ofday)
(UNITS minutes EST)
(RANGE 0 LT X LE 2400))

26

NOSHOW:
usage: do not tell user when this fact is deduced
form: (NOSHOW PosFact PosFact ...)
restrictions: facts must be affirmative
example: (NOSHOW (T58 inlet-diameter) (T58 compression-ratio))

NULL-HYP:
usage: define statement to be displayed if no solution found
form: (NULL-HYP Statement)
restrictions: none
example: (NU LL-HYP (Data does not match any known compressor.))

27

Wjl WMWLW' W71.01. vv~p.

APPENDIX B

Glossary of Terms

29

FactStmt = list of English words with no punctuation
there are 3 forms --
"o,-dinary" statements made of words:
(compressor housing is made of steel)
(turbine does not have driver rings)

simple arithmetic statements:
(Formula Relat Formula)
(number of stages = = 6)
((quotient (length of rod) (diameter of rod)) GT 2.0)

bounded arithmetic statements:
(Number OrderRelat Formula OrderRelat Number)
(15.5 LE diameter of inlet LE 18.5)

PosFact = affirmative FactStmt
(engine has variable geometry)

Formula = numeric constant, attribute of concept, or
LISP expression with AofC for each variable
3.14
number of stages -or- (number of stages)
(times (width of box) (height of box))

Eqn = another word for Formula; used to generate
value for variable that user didn't know

Relat = numerical relational operator
LTor <
LE or <
EQor = or -
NEor <>or!=
GEor >=
GTor >

OrderRelat = one of two ordered relational oper itors
LTor <orLEor<=

Number = any numeric constant
AofC = specification of a Concept and one of its Attributes

(number of stages)
(thrust of engine)

Concept = name [atom] of frame of fundamental "thing"
stages
engine

Attr = attribute [atom I slot of Concept
number
thrust

FactCode = code symbol which names a fact frame
fact8
fact 142

RuleCode = code symbol which names a rule frame
rule4
rule63

MenuCode = code symbol which names a menu frame
menu2
menu5

XorCode = code symbol which contains a list of FactCodes
xor3 -- (fact8factl2)
xorl7 - (fact5 fact37 fact25)

HypCode = code for fact which is a hypothesis

31

r% M7 M Urilyy ~ y- V7 ~ IUW f. ~iwwY

FactPair = list of FactCode and Sense
(fact8 1)
(fact27 0)

FactTriplet = list of FactCode, Sense, and Weight
(fact8 1 6)
(fact27 0 1)

Sense = fact is either affirmative [1] or negative [01
State = truth of a fact or status of a rule

0 = fact: negative; rule: failed
I = fact: affirmative; rule: fired
-1- indeterminate
Weight = number [usually an integer] appended to a FactStmt

in the IF portion of a NEED rule.
there are not weights in the classic sense, but are
used to implement a logical OR in an IF/THEN rule.

Question = list of English words in the form of a question
(Can you see any vanes?)
(What is the rated thrust of the engine?)

Template = base portion of multiple choice fact
(compressor housing is made of X)
(X brackets support the pump)
(turbine has X vanes)

Choice = list to be substituted for X in Template to make FactStmt
(cold rolled steel)
(aluminum)

Fragment another word for Choice
Reason how a fact or numeric concept was learned

deduced
given
calculated

DataUnits =units that number is in, displayed with prompt
units are not "understood" by program
feet
pounds per square inch

32

APPENDIX C

Animal Knowledge Base

33

This is the Animals data as used by Genie version 5.5

z a .. If/Then rules a a .a a a

determine general class [mammal, bird. fish]

(IF (animal has hair)
(number of legs LE 4)

THEN (animal is mammal))
(IF (animal gives milk)
THEN (animal is mammal))

(If (animal has feathers)
THEN (animal is bird))

%" (IF (animal flies)
(animal lays eggs)
(number of legs EQ 2)

THEN (animal is bird))
(IF (animal has scales)

(animal has fins)
(animal swims)

THEN (animal is fish))

determine subclass [carnivore, ungulate, feline]

(IF (animal eats mostly meat)
THEN (animal is carnivore))
(IF (animal has pointed teeth)

(animal has claws)
(animal has forward-pointing eyes)

NEED (1)
THEN (animal is carnivore))

(IF (animal is mammal)
(animal has hoofs)

THEN (animal is ungulate))
(IF (animal is mammal)

(animal chews cud)
THEN (animal is ungulate)

(animal is even toed))
(IF (animal is mammal)

(animal is carnivore)
(animal has tawny color)

THEN (animal is feline))

determine specific mammals

(IF (animal is mammal)
(animal flies)

THEN (animal is bat))
(IF (animal is feline)

(markings are dark spots)
THEN (animal is cheetah))

135

(IF (animal is feline)
(markings are black stripes)

THEN (animal is tiger))

(IF (animal is feline)
(markings are plain)

(animal roars)
THEN (animal is lion))

(IF (animal is ungulate (10))
(markings are dark spots (10))
(animal has long neck (1))
(animal has long legs (1))

NEED (21)
THEN (animal is giraffe))

(IF (animal is ungulate)
(markings are black stripes)

THEN (animal is zebra))

determine specific birds

(IF (animal is bird (10))
(animal does not fly (10))

(animal is black and white (10))
(animal has long neck (1))

(animal has long legs (1))
NEED (31)
THEN (animal is ostrich))

(IF (animal is bird)
(animal does not fly)
(animal is black and white)

(animal swims)
THEN (animal is penguin))

(If (animal is bird)
(animal has red breast)

THEN (animal is robin))
(IF (animal is bird)

(animal is carnivore)
(animal hunts at night)

THEN (animal is owl))

(IF (animal is bird)
(animal is carnivore)
(animal is scavenger)

THEN (animal is vulture))

determine specific fishes

(IF (animal is fish)
(animal is bought at pet stores)

THEN (animal is goldfish))

36

(IF (animal is fish)

(animal is carnivore)
(animal is big)

THEN (animal is shark))

(IF (animal is fish)

(animal is carnivore)

(animal fits into glass bowl)

THEN (animal is piranha))

a a z z. Hypotheses a .. a ua

mammals

(HYP (animal is bat))

(HYP (animal is tiger) (animal is cheetah) (animal is lion))

(HYP (animal is giraffe) (animal is zebra))

; birds

(HYP (animal is ostrich) (animal is penguin))
(HYP (animal is robin))

(HYP (animal is owl) (animal is vulture))

; fishes

(HYP (animal is goldfish))

(HYP (animal is shark) (animal is piranha))

S. Mutually-exclusive Facts . z az.

(XOR (animal is mammal) (animal is bird) (animal is fish))

; .. a. = Custom Questions a x = a = = a

(QUESTION (animal is scavenger) (Is the animal a scavenger?))

- = a = = = = = Menus = = = = a a a

(NENU (animal has X) (What is the skin covering?)
((hair) (feathers) (scales)))

(NENU (markings are X) (What kind of markings does animal have?)

((black stripes) (dark spots) (plain)))

* 3 Defaults 3 ..

(DEFAULT ((animal is mammal) (animal is not mammal)))

(DEFAULT ((animal is bird) (animal is not bird)))

(DEFAULT ((animal is fish) (animal is not fish)))
(DEFAULT ((animal is carnivore) (animal is not carnivore)))
(DEFAULT ((animal is ungulate) (animal is not ungulate)))

.... . . . Default Conclusion

(NULI-HYP (You should visit the zoo more often.))

37

APPENDIX D

Animal Bootstrap File

39

; This file loads and executes the animal identification ES

; Display banner
(msg N "Animal Identification Demo" N N)

; Load inference engine
(load 'genie)

; Define specifics for this knowledge base
(setq InputFile 'animals.english)
(setq DigestedFile 'animals.frames)
(setq VerbPairs (cons '(flies fly) VerbPairs))

; Do it
(initialize)
(driver go)

41

p ,U SP - 5 P -

APPENDIX E

Sample Run of

Animal Identification Expert System

43

U!

Animal Identification Demo

Please wait whilst Genie version 5.5 is loaded.

Please wait whilst Genie loads the data.

24 rule frames loaded.
51 fact frames loaded.
2 menu frames loaded.
I concept frames loaded.
3 exclusive-or sets loaded.
14 potential hypotheses loaded.
0 'ask-first' facts loaded.
Fact symbol tree loaded.

All data has been loaded from animals.frames.

Hello, fferd.

What is the skin covering?

1 hair
2 feathers
3 scales

Enter the number of your choice-- why

Because this fact is used in determining if
[factl3] : animal is fish

What is the skin covering?

1 hair
2 feathers
3 scales

Enter the number of your choice-- 2

Rule3 deduces animal is bird.
Because animal is bird Genie deduces animal is not mammal.
Because animal is bird Genie deduces animal is not fish.
Does animal have red breast? show rule3

IF [factS] animal has feathers [succeeded]
THEN [fact6] animal is bird [succeeded]

Does animal have red breast? find mammal

[fact3] animal is mammal

45

Does animal have red breast? how fact3

Genie learned that animal is not mammal
because it was mutually exclusive with

[fact6] : animal is bird

Does animal have red breast? show xorl

The following facts are mutually exclusive

[fact3] : animal is mammal
[fact6] : animal is bird
[factl3] : animal is fish

Does animal have red breast? no

Does animal fly? why

Because this fact is used in determining if
[fact38] : animal is ostrich

Does animal fly? no

Is animal black and white? hyp

The current hypothesis is
[fact38] : animal is ostrich

Is animal black and white? yes
Does animal have long neck? no
Does animal have long legs? no

Does animal swim? facts

given [fact5] animal has feathers

deduced : [fact6] animal is bird
excluded : [fact3] animal is not mammal
excluded [factl3] animal is not fish
excluded [factIO] animal does not have scales
excluded [factl] animal does not have hair
elim (hyp) [fact5l] : animal is not piranha
elim (hyp) [fact4g] animal is not shark
indeterminate: [fact24] animal is feline

elim (hyp) : [fact29] : animal is not tiger
given [fact40] : animal does not have red breast

elim (hyp) [fact4l] animal is not robin
given : [fact7] animal does not fly
given : [fact37] animal is black and white
given [fact33] : animal does not have long neck
given : [fact34] : animal does not have long legs

elim (hyp) : [fact38] animal is not ostrich

46

Does animal swim? yes
Rule18 deduces animal is penguin.

Final conclusion: [fact3g] : Animal is penguin.

Give me a command-- how fact39

Genie deduced the hypothesis animal is penguin
because rule18 fired. It says

IF [fact6] animal is bird [succeeded]
and [fact7] animal does not fly [succeeded]
and [fact37] animal is black and white [succeeded]
and [fact12] animal swims [succeeded]

THEN [fact39] animal is penguin [succeeded]

Give me a command-- why fact7

Genie needed to know if
[fact7] : animal flies

because it was trying to determine if
[fact38] : animal is ostrich

which was the current hypothesis.

Give me a command-- why fact6

Genie never tried to learn if

[fact6] animal is bird

Give me a command-- why fact38

The hypothesis was
[fact38] animal is ostrich

Give me a command-- end
Goodbye. fferd.

47

WKi
rR

%yrV

7F
T6Vv

r
,." F 7 V

APPENDIX F

Numeric Test Knowledge Base

49

I

This is the numeric test data as used by Genie version 5.5

....... = = If/Then rules = = = = =

(IF (size of vmem > (times 0.8125 (capacity of vmem)))
THEN (it is time to recopy vmem))

(IF (it is time to recopy vmem)
(vmem update is not successful)

THEN (you can call xerox support))

(IF (201 GT value of display)
((times 2 3) <= number of reboot-tries)

THEN (you can call xerox support))

(IF (value of display EQ 1109)
(900 LE time of day < 1100)

THEN (you can keep working))

= Hypotheses

(HYP (you can call xerox support) (you can keep working))

; =-------- = Custom Questions

(QUESTION (number of reboot-tries)
(How many times did you try to reboot?))

; special chars must be protected in Franz version
(QUESTION (number of day) (What is today\'s date?))

; Ask First

(ASK-FIRST (number of day))

; Numeric Info

(NUMBER (size of vmem)
(UNITS megabytes)
(EQN (plus (number of day) (number of reboot-tries)))
(RANGE x GE 4)
(PRECISION 1))

(NUMBER (capacity of vmem)
(PRECISION 3))

(NUMBER (time of day)
(UNITS HHmm EST)
(EQN 1030)
(RANGE 0 < xxxxx <= 2400))

(NUMBER (number of reboot-tries)

(EQN (mod (time of day) 100)))

. = z= Default Conclusion

(NULL-HYP (You car. do whatever you want.))

51

APPENDIX G

Sample Run of Numeric Expert System

53

Numeric Test Demo

Please wait whilst Genie version 5.5 is loaded.
Please wait whilst Genie loads the data.

4 rule frames loaded.
9 fact frames loaded.
0 menu frames loaded.
4 concept frames loaded.
0 exclusive-or sets loaded.
2 potential hypotheses loaded.
1 'ask-first' facts loaded.
Fact symbol tree loaded.

All data has been loaded from numtest.frames.

Hello, fferd.

What is today's date? why

Because I was told to ask this question first.

What is today's date? 30
What is the size of vmem? (in megabytes) unknown

How many times did you try to reboot? why

Because this fact is part of an equation to calculate

size of vmem

How many times did you try to reboot? unknown
What is the time of day? (in HHmm EST) rule

The equation being evaluated is
number of reboot-tries + (mod (time of day) 100)

What is the time of day? (in HHmm EST) 2712
Expected 0 < time of day <- 2400

but you entered: 2712

Do you want to change your input? yes
What is the time of day? (in HHmm EST) 904
Calculated: number of reboot-tries = 4
Calculated: size of vmem = 34

What is the capacity of vmem? 40
Rulel deduces it is time to recopy vmem.
Is vmem update successful? yes
What is the value of display? 1109
Rule4 deduces you can keep working.

Final conclusion: [fact9] : You can keep working.

55

rV~WVwqWVu FWWVWIVTWY~nI!~~ma' u~ a'~ ~'5'5~a' !xFWfS"T 1WV~~V V 9 ~~W ~ .& '

Give me a command- facts

deduced [fact2] it is time to recopy vmem
given (fact3] vmem update is successful
elim (hyp) [fact4] you can not call xerox support
deduced [factg] you can keep working

Give me a command- numbers

calculated size of vmem = 34 megabytes
given capacity of vmem = 40
given value of display = 1109

calculated number of reboot-tries = 4
given time of day = 904 HHmm EST
given number of day = 30

Give me a command- numfacts

num-relation [fact8] 900 LE time of day < 1100
num-relat ion [fact6] (times 2 3) *NOT* <= number of reboot-tries
num-relation [factl] size of vmem > (times 0.8125 (capacity of vmem))
num-relation [fact5] 201 *NOT* GT value of display
num-relation [fact7] value of display EQ 1109

Give me a command- end
Goodbye. fferd.

56

DISTRIBUTION LIST

No. of No. or

-2 Administrator I Director
Defense Technical Info Center Benet Weapons, LaIm-ratory
ATTN: DTIC-DDA Armament He'.carch
Cameron Station De~ eloprie en cer
Alexandria, VA 22314-614.5 USAANICO(I!

ATTN: S,\lAI?-L.(L-TLpI Director Watervliet, NY 1-21S9
Defense Advanced Research

Projects Agency I Comimander

p. 1400 Wilson Boulevard U~S Arm% A% iat ion Research
Arlington, VA 22209 & Developmnri (ommand

p.ATTN: AMISAXA-L
1 IIQIA 430 (itodfello% lfld

ATTN: DA\IA-.ART-M\ St Louis. MO(631-24
Washington, DC 20310

*I Commander
1 I]QI)A Arms. A~ lation SN -ten Command

US Army Artificial Intelligence ATTN: AMS.VD si
Center N. Hodenstein

ATTN: DACS-DMA, 4300 Goodfellow 11%d
Dr. A. Ressler St. Louis. Nit) 63120-1798

, r Washington, DC 20310-0200
1 Director

1 Commander US Army Air Niobilit% Rese-irch
US Army Miateriel Command A. Development Laboratory
ATTN: AMCDRA-ST Ames Research Center
5001 Eisenhower Avenue Moffett Field, CA 94035
Alexandria, VA 223,33-0001

1 Director
I Commander AppI Tech. Directorate

Armament Research U SAARTA (AVS('UN)
Development Center ATTN; DAVDL,-EU.SY.-RPV

USAANICCONI Fort Eustis, VA 236i04
ATTN: S\ICAR-TDC
Dover, NJ 07801 1 Commander

* US Army Communications-
2 Commander Electronics Command

Armament Research & ATTN: AMSEL-ED
Development Center Fort Monmouth, NJ 07703

USAAMCCOM
ATTN: SMCAR-TSS I Commander
Dover, NJ 07801 US Army Comm u n iation&-

* Electronics Command
1 Commander ATTN: AMSEL-RD-COM41R-1,

p.US Army Armament Munitions Dr Powell
&Chemical Command Fort Monmouth, NJ 07703-5204

ATTN: S\IC R-ESP-L
Rock Island, IL 61299

57

J w ,w U-. * vs tr u- us _v u- L's Ir., k U' V . . t U* -L'S rw nt-v t n' t S. I5.- 5. - ,-i. It'S trw lrw S Stv ' , .. - 'S L tr u. n.4ii tCr.g -Jg' .

DISTRIBL'TION LIST

No. of No. of
opies ()rtanization Comes OrYanIzation

(ommander I Director
ERADCOM Technical Library IS Arm) TRADOC Systems
ATTN: DELSD-L (Reports Section) Analysis Activity
Fort Monmouth. NJ 07703-5301 ATTN: ATAA-SL. Tech Lib

White Sands Missile Range,
Commander NM 88002
V'S Army Missile Command

Research, Development. ." 1 Commandant
Engineering Center US Army Infantry School

ATTN: AMSMI-RD ATTN: ATSH-CD-CSO-OR

Redstone Arsenal, AL 35898 Fort Benning. GA 31905

Director I Commander
I'S Army Missile & Space US Army Development & Employment

Intelligence ('enter Agency

ATTN: AIAMS-YDL ATTN: MODE-TED-SAB
Redstone Arsenal. At. 35899-5500 Fort Lewis, WA 98433

Commander I Commandant
IS Army Tank Automotive Command I'S Military Academy
ATTN: AMSTA-TSL ATTN: Lt. Col. J. Dallen
Warren, MI 48397-5000 West Point, NY 10996

Commander I AFWL/SUL
US Army Research Office Kirtland AFB, NM 87117
ATTN: AMXRO-A\L.

Dr J. Chandra I Air Force Armament Laboratory
Dr. R. Green ATTN: AFATL/DLODL

11.O. Box 12211 Eglin AFB, FL 32542-5000
Resarch Triangle Park,

NC 27709-2211 1 AFELM, The Rand Corporation
ATTN: Library-D

Commander 1700 Main Street
US Army Combat Dev A Santa Monica. CA 90406

Experimentation Command
ATTN: ATEC-SA, I Battelle

Dr. M. R. Bryson Columbus Laboratories
Ford Ord, CA 93941 ATTN: Ordnance Div

505 King Avenue
Commander Columbus, OH 43201
US Army Harry Diamond

Laboratory 2 Southwest Research Inst.
ATTN: DELttD-RT-RD Dept. of Mech. Sciences
2800 Powder Mill Rd ATTN: Mr. A. Wenzel

Adelphi, MD 20783 Mr. P. Zabel
8500 Culebra Road
San Antonio, TX 78284

., 58

DISTRIBUTION LIST

No. of No. of
CODieS Ortanization £2 pje$ Ortanization

I Oklahoma State University 1 Dr. Steven B. Boswell
Field Office MIT Lincoln Lab, Group 94
ATTN: Mrs. Ann Peebles Lexington, MA 02173-0073
P.O. Box 1925
Eglin Air Force Base, 1 Robert L. Stewart
FL 32542 Johns Hopkins University

Applied Physics Laboratory
1 Prof. Lotfi Zadeh Laurel, MD 20707

Dept. of Electrical Engr.
& Comp. Science Aberdeen Proving Ground

University of California
Berkeley, CA 94720 2 Dir, USAMSAA

ATTN: AMXSY-D
1 Prof. James T. P. Yao AMXSY-MP (1t. Cohen)

School of Civil Engr.
Civil Engr. Bldg. 1 Cdr, USATECOM
Purdue University, ATTN: AMSTE-TO-F
West Lafayette, IN 47907

3 Cdr, CRDC, AMCCOM. Bldg. E3516
1 Prof. J. L. Chameau ATTN: SMCCR-RSP-A

Geotech Engr. SMCCR-MU
Grissom Hall SMCCR-SPS-IL
Purdue University,
West Lafayette, IN 47907

1 Dr. William H. Friedman
Dept. Econ. & Dec. Sci.
Loyola College
401 N. Charles St.
Baltimore, MD 21210-2699

1 Machine Intelligence Inst.
lona College
ATTN" Dr. R. Yager
New Rochelle, NY 10801

1 Dr. Felix S. Wong
Weidlinger Associates
620 Hansen Way
Suite 100
Palo Alto, CA 94304

1 Dr. Wilfred E. Baker
8103 Broadway
San Antonio, TX 78209

1 Dr. Joseph Sperrazza
1000 Cedar Corner
Perryville, MD 21903

59

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the
reports it publishes. Your comments/answers to the items/questions below will
aid us in our efforts.

1. BRL Report Number Date of Report

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or
other area of interest for which the report will be used.)

4. How specifically, is the report being used? (Information source, design
data, procedure, source of ideas, etc.)

S. Has the information in this report led to any quantitative savings as far
as man-hours or dollars saved, operating costs avoided or efficiencies achieved,
etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future
reports? (Indicate changes to organization, technical content, format, etc.)

Name

CURRENT Organization

ADDRESS Address

City, State, Zip

7. If indicating a Change of Address or Address Correction, please provide the
New or Correct Address in Block 6 above and the Old or Incorrect address below.

Name

OLD Organization
ADDRESS

Address

City, State, Zip

(Remove this sheet, fold as indicated, staple or tape closed, and mail.)

FOLfID RE- - -

Director NO PSTAG
us Army ballistic Research Laboratory NE1CE PSAGE
ATTN: DRXBR-OD-S? IF MAIL WE EDR
Aberdeen Proving Ground, HD 21005-5066IF ALE

UNTDSTATES

OFFICIAL SUSIIIESSI
PNLYFRa PRIVATE u94. DUO BU IN S REPLY MAIL

FMIST CLASS KANMT NO 12042 VSINGT0I4,O0C

POSTAGE WILL K PQ0 IV 0IMRATMNT OF THE ARMY

Director
US Army Ballistic Research Laboratory
ATh: DRXBR-OD-ST
Aberdeen Proving Ground, HD 2100S-9989

---------------------------- FOLD HERE - - - - - - - --

I11 jjj

E ~ - - - - *. b -

ft
N

N

I

-ft

*1

'p

d 4
ft~'

'N

p

US

I

I
F'

